
Scott Klement and Yvonne Enselman

Improve Software
Quality

How do I

Test levels and Sequences

Path for development and testing in unison

Requirements verified
and project planning

Planning

Coding at the level to
determine small problems

Component

Integration

System

Acceptance

Completion

Ensuring all coexistent
processes are accounted for

Does this allow the system
to work as needed

Does this allow the business
to work as needed

Close out all activities and
document for future use

A request to support a business need was made; does
this artifact deliver that functionality as needed.

Component - What was broken out in development for staged
improvement and do the calculations or function work?
Component Integration - captured data flow correctly
System - are the approved transactions processing and others being
prevented.
System Integration - can the system interact with 3rd party components.
Acceptance - can the user take the provided results and communicate
as needed to business and customers.

How the modification proves it does as intended

Functional Testing

Can the system perform this task in a safe, reliable, and
responsible way

Performance parameters within tolerance
Security vulnerabilities accounted for
Portability and forward maintainability
User experience accepted

Was the modification developed in keeping with standards for system use

Non Functional Testing

Scenario: Code Keeps Breaking
C INVHDRK1 SETLL INVDET
C INVHDRK1 READE(N) INVDET 10
C DOW *IN10 = *OFF

C EVAL SUBTOTAL = SUBTOTAL
C + %dech(QTY * PRICE: 7: 2)
C EVAL TOTALQTY = TOTALQTY + QTY

C EVAL RRN4 = RRN4 + 1
C EVAL *IN61 = *ON
C WRITE INVENT4S

C INVHDRK1 READE(N) INVDET 10
C ENDDO

C EVAL HIGHRRN4 = RRN4

C ENDIF

* Recalculate total
C EVAL TOTAL = SUBTOTAL + SHIPPING + TAX

Every time we make a
change, it breaks something
in production!

Smaller Testable Components

count = invoice_getDetail(INV.INVNO
: %date(INV.CRTDATE:*iso)
: det
: %elem(det));

if count = FAIL;
ERR = INVOICE_getLastErr();

endif;

This can be called from all
programs that need invoice
details.

No need to repeat the logic!

It can likewise be called from a
Unit Testing Framework.

Each time you make a change,
you can test all pieces for
regression.

The activity that focuses on why and what is requested
at the smallest rational unit of development and testing

Test Basis - what are the design, code data, and components in
play

Test Objects - code and modules being built or modified,
organization of data, classifications of both

Typical defects and failures - functions, logic, and data

Relationship to the requirements is imperative and needs verification

Component Testing

Ensuring Good Integration

dcl-proc invoice_getDetail export;

dcl-pi *n int(10);
invno like(INVHDR_t.invno) const;
crtdate date(*iso) const options(*omit);
detail likeds(INVOICE_detail_t)

dim(999) options(*omit:*nopass:*varsize);
detelem int(10) const options(*omit:*nopass);

end-pi;

Code should be a “black box”

If the caller knows how it works
and does part of the needed
logic – it will be hard to reuse,
and therefore hard to integrate
everywhere it’s needed.
The caller should only need to
understand the “interface” (PR
or PI)

Use “const”, “varsize”,
“omit/nopass” to make it more
versatile.

The activity that focuses on how what was changed interacts with the
existing code and structures in an environment

Test Basis - software and system design elements,
communications, use cases

Test Objects - Subsystems, databases, APIs, interfaces

Typical defects and failures - Poor data quality in either the test
bed or productions, timing issues, communication failures in
protocol compatibility.

At this level there can be testing of new processing as well as regression testing based on the requirements

Integration Testing

Working with the system directly does the development
met criteria for quality.

Complex branch and decision coverage
Data interactions between screens, browsers, and logic
Sequence of processes and opened paths
APIs, micro-services, and other modular interactions
Data formatting for intracompany or business partner exchange
interaction.

This is the point to look into the technical processing of the system and break out testing
into very technical verification

White Box Testing aka Glass Box

Introducing change into an environment requires
standard testing and regression testing in concert

Automated testing and continuous integration framework is useful
Code repository and change management procedures
Documentation of workflow streams requiring re-testing if anything
in the process changes.
Rerun all failed tests prior to go live to ensure nothing fails if out of
sequence

Unknown and previously undiscovered bugs can be a factor in issues found at this point

Change Related

Testing at the System Level

This is where we run the code,
make sure it works from the
user’s perspective.

How do you know if It’s
designed well?

What makes you confident that
you’ve done it correctly?

performance management APIs

https://www.ibm.com/docs/en/i/7.4?topic=performa
nce-management-apis

https://www.ibm.com/docs/en/i/7.4?topic=performance-management-apis
https://www.ibm.com/docs/en/i/7.4?topic=performance-management-apis

Focus on ensuring the system can perform the new task as needed and the added
processing will not negatively impact the environment as a whole

Test Basis - Requirements and specifications, risk analysis, Epics,
models of behavior, state diagrams

Test Objects - applications, HW/SW systems as a whole. OS,
process under test, System configuration

Typical defects and failures - unexpected system performance,
security mismatch, data flow concern, User expectations not met

The “ility” testing parts

System Testing

CPU Performance – Efficency

Memory Performance – Reliability

Disk I/O Performance – Useability

Interactive Performance – Portability

LAN Performance – Maintainability

Security
In our system status overview, we do a check of all users with default passwords (user profiles with passwords
are equal to the name of the user profile), your security system values, and your file shares.

There are currently 418 enabled user profiles using default passwords (password = user profile name). This is
a significant security exposure and the recommendation is that all of these profiles have their password
changed or should be disabled immediately.

The password level of the system is set to 0. This limits you to passwords with a max of 10 characters, no mix of
upper and lowercase, and limited special characters. We recommend working towards changing this value to at
least 2. Information from IBM on how to plan for this change can be found here:
https://www.ibm.com/support/knowledgecenter/en/ssw_ibm_i_73/rzarl/rzarlconsdchg2.htm

There are multiple IFS directory shares (SMB shares) mapped on your system, but no share of /root which is
good as that greatly mitigates the risk of a ransomware attacks on your system.

https://www.ibm.com/support/knowledgecenter/en/ssw_ibm_i_73/rzarl/rzarlconsdchg2.htm

Did the modification provide what was requested
properly

Test Basis - Business requirements, regulations, user stories

Test Objects - business processing for a fully integrated system,
DR/HA site, forms/reports, Production data

Typical defects and failures - System workflows don’t meet the
business or user requirements, regulations were unknown,
platform or infrastructure incompatibility.

In System testing we proved the system could function, here we ensure the business can as
well.

Acceptance Testing

User Acceptance

Important to have the user try
the changes before going live.
Let them kick the tires, verify
that it works the way they want
it to.

The user will see things
differently than you do, and will
try different things.

The fewer problems found after
going live, the better!

Planned Enhancements and Migrations

Keeping environments healthy long term requires updates
Specifications up to date
Document test cases
Bi-Directional traceability needs to be maintained
Tool support
People knowledge and contributions
Don’t neglect your code and environments - Technical Debt

Maintenance Testing

All types of tests need to be performed for every level of development

Testing Types

Verify requirements
have been met.

Functional

Ensure the system is going
to handle things optimal

Non-Functional

White Box

Change Related

Maintenance

Technical deep dive

Ensure what is new didn’t
impact older functions

Keep the system
healthy

